
DistilKaggle: A Distilled Dataset of Kaggle Jupyter
Notebooks

Mojtaba Mostafavi
Department of Computer Engineering

Sharif University of Technology
m.mostafavi@sharif.edu

Arash Asgari
Department of Computer Engineering

Sharif University of Technology
ash.asgari@sharif.edu

Abbas Heydarnoori
Department of Computer Science

Bowling Green State University
aheydar@bgsu.edu

Mohammad Abolnejadian
Department of Computer Engineering

Sharif University of Technology
mohammad.abolnejadian@sharif.edu

Abstract—Jupyter notebooks have become indispensable tools
for data analysis and processing in various domains. However,
despite their widespread use, there is a notable research gap in
understanding and analyzing the contents and code metrics of
these notebooks. This gap is primarily attributed to the absence
of datasets that encompass both Jupyter notebooks and extracted
their code metrics. To address this limitation, we introduce
DistilKaggle, a unique dataset specifically curated to facilitate
research on code metrics in Jupyter notebooks, utilizing the
Kaggle repository as a prime source. Through an extensive
study, we identify thirty-four code metrics that significantly
impact Jupyter notebook code quality. These features such as
lines of code cell, mean number of words in markdown cells,
performance tier of developer, etc. are crucial for understand-
ing and improving the overall effectiveness of computational
notebooks. The DistilKaggle dataset is derived from a vast
collection of notebooks, and we present two distinct datasets:
(i) Code Cells and markdown Cells Dataset which is presented
in two CSV files, allowing for easy integration into researchers’
workflows as dataframes. It provides a granular view of the
content structure within 542,051 Jupyter notebooks, enabling
detailed analysis of code and markdown cells; and (ii) Notebook
Code Metrics Dataset focused on the identified code metrics
of notebooks. Researchers can leverage this dataset to access
Jupyter notebooks with specific code quality characteristics,
surpassing the limitations of filters available on the Kaggle
website. Furthermore, the reproducibility of the notebooks in
our dataset is ensured through the code cells and markdown cells
datasets, offering a reliable foundation for researchers to build
upon. Given the substantial size of our datasets, less than 5 GB,
it becomes an invaluable resource for the research community,
surpassing the capabilities of individual Kaggle users to collect
such extensive data. For accessibility and transparency, both
the datasets https://doi.org/10.5281/zenodo.10317389 and the code
https://github.com/theablemo/DistilKaggle utilized in crafting this
dataset are publicly available.

Index Terms—Open dataset, Kaggle, Jupyter notebooks, Code
metrics, Code quality

I. INTRODUCTION

Jupyter notebooks have emerged as the predominant coding
environment for data scientists [1]. They offer numerous ad-
vantages over traditional software development environments,

including seamless documentation, code sharing, result anal-
ysis, visual and intuitive code development, and the ability to
compile, execute, and modify code cells without re-executing
the entire notebook. The quality and comprehensibility of
implementations in computational notebooks are pivotal for
various purposes, such as education for imparting coding best
practices to future data scientists [2], notebook reusability [3],
and maintainability [4]–[6]. Recent studies have concentrated
on enhancing the quality of Jupyter notebooks through im-
proved documentation [5], [7]–[10], notebook structure [11]–
[13], and managing notebook variants and revisions [13], [14].
Many of these applications and research use various datasets
of computational notebooks.

Jupyter notebooks possess several features distinguishing
them from other programming environments, such as interac-
tive programming, code cells, markdown cells, the possibility
of arranging cell executions in different orders within a note-
book, and the availability of each cell’s output right after the
code, etc. In many cases, these features can overshadow script-
based coding styles, such as independent Python scripts. For
instance, in Jupyter notebooks, the result of each executed cell
is attached to it, motivating developers to use commands to
produce outputs. In addition to code cells, Jupyter notebooks
include another type of cell called a markdown cell, where
developers can explain each part of their code. This feature
incentivizes developers to enhance the quality of their code
documentation by utilizing HTML tags in markdown cells.

The widespread adoption of notebooks in recent years, along
with their distinctive features, has motivated our commitment
to delivering a comprehensive and current collection for re-
searchers to utilize with enhanced efficiency and ease. This
dataset comprises notebooks paired with features designed to
assess code quality, as elaborated upon in this paper.

Quaranta et al. [15] introduced KGTorrent, a dataset com-
prising 248,761 Jupyter notebooks, totaling over 180GB in
size. Despite its utility for the community, we identified
several shortcomings in this dataset, leading us to present
DistilKaggle. The motivations behind introducing DistilKaggle



are outlined below:
1) The latest Jupyter notebook in the KGTorrent dataset

dates back to October 2020, and the code provided by
the authors to refresh the dataset no longer functions due
to changes in Kaggle’s notebook downloading policies.
In contrast, the notebooks in this paper were published
on the Kaggle platform between October 2020 and
October 2023.

2) Downloading notebooks in a quantity comparable to the
dataset presented here would take months due to Kaggle
API’s request rate limit. Our dataset offers a convenient
access to a substantial volume of valuable data—Jupyter
notebooks.

3) In contrast to the substantial 180GB size of the KG-
Torrent dataset, our dataset has been streamlined to
a manageable size of 3GB by organizing notebooks
into two dataframes for code cells and markdown cells,
enhancing download efficiency and facilitating a swift
utilization. Despite this reduction, full reproducibility is
maintained through the provided dataframes. Still, the
complete notebooks dataset is provided upon request.

4) A common step in works on code quality involves
extracting code quality metrics. After an extensive re-
view of previous works, we identified 34 static code
quality features, like lines of code cell, mean num-
ber of words in markdown cells, performance tier of
developer. These metrics are extracted from all the
notebooks in our dataset and presented in CSV format.
We anticipate that these dataset metrics will signifi-
cantly save researchers’ time and effort. Additionally, for
works requiring notebooks with specific characteristics,
the features dataframe empowers researchers to create
custom subset data by filtering based on their study’s
requirements.

In this paper, we collected a set of notebooks’ features
that either were proposed by previous studies for static code
analysis or were presented as being effective for code quality
by the studies focused on Jupyter notebooks. In the next step,
we extracted these features from our notebooks’ dataset. So,
we made the following contributions:

• A dataset of Jupyter notebooks crawled from the Kaggle
platform.

• Code for crawling and scrapping the notebooks.
• A dataset of features extracted from each notebook.
• Code for feature extraction.

II. DATASET

There are different platforms with large datasets of note-
books that provide a large amount of information about the
notebooks and their creators. Each of these platforms also
has a different level of popularity among scholars and data
scientists, which may increase the validity of the studies that
are conducted based on their data. Also, based on the aim of
the studies, the researchers need a set of information that is
only available on a small number of these platforms.

Kaggle, a subsidiary of Google, is an online community
of data scientists and machine learning practitioners. Kaggle
allows users to find and publish datasets, explore and build
models in a web-based data-science environment, work with
other data scientists and machine learning engineers, and enter
competitions to solve data science challenges. We chose the
Kaggle platform as the source of the notebooks for this study
for various reasons.

To the best of author’s knowledge, DistilKaggle is one of
the first Jupyter notebook metrics dataset on this scale and
can be used for different data mining and other code analysis
purposes.

In the following sections, we will explain the metrics, whose
names may not inherently convey their nature, in detail and
the methodology of obtaining them. All of the metrics, their
abbreviation in DistilKaggle, and the paper(s) introduced them
are presented in Table I.

A. Metrics of Notebooks

We discuss notebook metrics in two groups.
1) Notebook-Based Metrics: The first set of metrics are

those that have been specifically introduced for Jupyter note-
books. In recent years, several articles have worked on the
code quality of Jupyter notebooks, and various metrics have
been introduced in them [2], [4], [5], [9], [10], [12], [12],
[16]–[21]. After extracting all these metrics, we discussed with
five notebook developers to identify the ones that are effective
in code comprehension. Finally, out of 23 available metrics,
17 of them were selected, and we implemented appropriate
algorithms to obtain all of them. These criteria are introduced
Table I and some of them are described here:

• Number of Visualization Data Type: Considering that it
is possible to display the output of each cell in notebooks
by executing it, this metric shows the number of visual
outputs, including all kinds of images and graphs.

• Number of Executed Cells: This attribute specifies the
number of cells that have been executed in a notebook
and have an execution order number.

• H1, H2 and H3 headlines: These metrics show the num-
ber of headlines that are written inside the markdowns
and are usually used to express titles and subtitles.

• Distribution of Markdowns: For calculating the distri-
bution of markdowns throughout a notebook, we suggest
the inverse coefficient of variation. The coefficient of
variation (CV), also known as relative standard devia-
tion (RSD), is a statistical measure commonly used for
comparing diversity in workgroups and is defined as the
ratio of the standard deviation to the mean [22].

CV = σ/µ (1)

where:
σ =

√∑
(xi− µ)2/n (2)

where:
- n: the size of population



- xi: each value from the population
To calculate the distribution of markdown, we considered
the number of words of each markdown as the size of it.
After applying Equation 1 to the notebooks of the final
dataset, we tested the results and evaluated the confidence
of our outputs. For instance, the highest CV (the most
unbalanced distribution) belongs to notebook P1 and the
lowest CV (the most balanced distribution) belongs to
notebook Q2.

• Distribution of Imports: We adopted a similar ap-
proach as the distribution of markdowns for assessing
the distribution of the imports feature within Jupyter
notebooks, leveraging the inverse coefficient of variation
as a statistical measure.

• Performance Tier: This feature is present in the metadata
of the Kaggle repository, which, based on specific rules,
determines the level of expertise of notebook developers
with one of the levels 0 to 4.

• External API Popularity: This metric assigns a number
to each notebook that represents to what extent the APIs
and libraries used in that notebook are popular [19]. The
more its value, the more the APIs used in the notebook
are frequently used by other developers which results in
better CU based on previous studies [23]. In order to
measure this criterion in notebooks: First, we counted the
number of times each API was imported in our dataset
and assigned a popularity score to each API based on the
frequency at which they were used in the whole dataset.
Then, for each notebook, we summed up the popularity
score of APIs used in that notebook to obtain the External
API Popularity [23] score for that notebook.

2) Script-Based Metrics: Given that each code cell in
Jupyter notebooks is a regular Python script, many of the
metrics for code scripts proposed by prior studies [23]–
[28] are also applicable to code cells in Jupyter notebooks.
Considering that a small percentage of notebooks use the
concept of class and object orientation3 and have a weaker
structure, some metrics were ignored.

Script-based metrics including eight basic metrics, two
complexity metrics, four Halstead metrics [29] and three
readability metrics as introduced in Table I and some of them
are explained here:

• Cyclomatic Complexity: Cyclomatic complexity assigns
a number for code complexity based on code graph. It
was first used by Mathias [27] in order to examine the
underlying nature of code designed to study the process
of program comprehension.

• KLCID: Kind of Line of Code Identifier Density (KL-
CID) is One of the complexity metrics which analyzes the
cognitive complexity of program comprehension tasks.
The KLCID is calculated by counting the lines of con-

1P: https://www.kaggle.com/code/xiwuhan/jmtc-2nd-place-solution
2Q: https://www.kaggle.com/code/anokas/two-sigma-time-travel-eda
3Based on the statistics of our notebooks dataset, only 3.5% of notebooks

defined classes to implement objects.

ceptually unique code and calculating the density of
identifiers.

TABLE I
FEATURES EXTRACTED IN THIS STUDY

Feature Abbreviation Reference
Script-Based Metrics

Basic Metrics
Lines of Code LOC [9], [23],

[24], [26]
Number of Blank Lines of Code BLC [23],

[24], [26]
Lines of Comments LOCom [23],

[24], [26]
Number of Comment Words CW [26]
Number of Statements S [23], [26]
Number of Parameters P [23], [26]
Number of User-Defined Functions UDF [16]

Complexity Metrics
Cyclomatic Complexity CyC [16],

[23], [24],
[26]

Nested Block Depth NBD [23], [26]
Kind of Line of Code Identifier
Density

KLCID [26]

Halstead Metrics
Number of Operands OPRND [23],

[26], [29]
Number of Operators OPRAT [24],

[26], [29]
Number of Unique Operands UOPRND [26], [29]
Number of Unique Operators UOPRAT [26], [29]

Readability Metrics
Average Line Length of Code ALLC [24]
Number of Identifiers ID [24]
Average Number of Identifiers AID [24]

Notebook-Based Metrics
Number of Code Cells CC [9], [30]
Mean Number of Lines in Code
Cells

MeanLCC [26]

Number of Imports I [26], [30]
Mean Number of Words in Mark-
down Cells

MeanWMC [9]

Number of H1 tags in the Mark-
down

H1 [10],
[30], [31]

Number of H2 tags in the Mark-
down

H2 [4], [10],
[30]

Number of H3 tags in the Mark-
down

H3 [4], [10],
[30]

Number of Markdown Cells MC [9], [21],
[30]

Mean Number of Lines in Mark-
down Cells

MeanLMC [16]

Number of Markdown Words MW [5], [26]
Number of Lines in Markdown
Cells

LMC [9], [23]

Distribution of Markdown Cells DMC [9], [30]
Distribution of Imports DI [9], [30]
Performance Tier PT [23], [32]
External API Popularity EAP [19],

[20], [23]
Number of Visualization Data Type VDT [17], [33]
Number of Executed Cells EC [30]

B. Dataset Construction Methodology

Our journey in generating the dataset began by obtaining
the paper IDs shared on Meta Kaggle API between October



2020 and October 2023. Due to Kaggle’s platform policy,
each machine can download limited number of notebooks per
day. To overcome this limitation, we utilized multiple servers
with various IP addresses, enabling the download of 293,290
notebooks from the Kaggle Platform. The response payload
containing the notebooks is stored in JSON format, with a
total size exceeding 300GB.

In the subsequent step, we organized the code cells and
markdown cells into two distinct DataFrames (CSV files). This
not only reduced the overall size of the dataset to 3GB but
also enhanced its usability for future data analysis by fellow
researchers. These refined DataFrames form an integral part
of our final dataset, DistilKaggle. The detailed description of
the columns of the Dataframes is presented in Table II.

TABLE II
COLUMNS OF THE DATAFRAMES

Column Description
Kernel ID This key represents the unique iden-

tifier assigned to the Kaggle project
associated with the Jupyter notebook.

Cell Index The Cell Index indicates the sequential
order of the cell within the Jupyter
notebook.

Source The Source key contains the actual text
written in the cell.

Output
Type

The Output Type key signifies the type
of output generated by the execution
of a code cell in the Jupyter note-
book. It can take on various values,
including:stream, display data, error,
execute result. This column only ex-
ists in code cells Dataframe.

Execution
Count

The Execution Count helps in tracking
the order of code execution and un-
derstanding the flow of computations
within the notebook. This column only
exists in code cells Dataframe.

Following a comprehensive investigation into code quality
metrics utilized in prior studies to evaluate code quality and
comprehensibility, we employed the markdowns and code
cells dataframes to extract these metrics for each Jupyter
notebook. In many instances, utilizing either the code cells or
markdown cells proved sufficient for capturing these features.
Certain features, such as the performance tier indicating the
developer’s expertise level, were extracted using the Meta
Kaggle dataset [34].

Finally, as Figure 1 shows, the resulting features dataset is
compact at 121MB, yet it offers invaluable insights into the
code quality of the notebooks.

III. SAMPLE APPLICATION

The sheer magnitude of this dataset renders it versatile for
diverse code analysis tasks. Many prior studies have concen-
trated on utilizing Jupyter notebooks for statistical analysis [2],
[4], [18], [20], [30] and implementing deep learning models
[5], [9], [10], [21], underscoring our dataset’s potential for
various research applications.

To demonstrate the dataset’s utility, we employed a Random
Forest classifier to predict the performance tier of notebook

Fig. 1. The approach to creating our 3 datasets

Fig. 2. (left) The influence of individual features on the classifier’s prediction
output (performance tier) is presented. Notably, API popularity emerged as the
most decisive factor in predicting the performance tier of the notebook creator.
(right) Confusion matrix results for the Random Forest Classifier trained with
100 trees, utilizing 80% of the dataset for training.

developers based on code quality features. We utilized 80%
of the DistilKaggle as our training set and the rest as the test
set. The achieved F1 score of 57% significantly outperformed
a baseline Random predictor, which would have an accuracy
of 20%. This stark contrast emphasizes distinct coding styles
between experienced and novice programmers, prompting fur-
ther exploration in a more targeted manner. Figure 2 presents
the performance of the Random Forest classifier. Our findings
open avenues for in-depth investigations into the nuances of
coding practices across different expertise levels.

IV. CONCLUSION

In this study, we introduced DistilKaggle, an extensive
dataset comprising 293,290 Jupyter notebooks, each accom-
panied by its corresponding static code quality metrics. Our
vision for DistilKaggle is to serve as a catalyst for future
research endeavors in the realm of code analysis. The substan-
tial volume of notebooks positions it as an ideal resource for
the development and evaluation of large-scale deep learning
models.

Notably, we enriched DistilKaggle by incorporating code
quality metrics from the KGTorrent dataset, creating a com-
bined dataset totaling 542,051 notebooks. In this process, we
extracted code quality metrics of these notebooks, amplifying
the depth and richness of our dataset.
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